
physical point of view. Theories of this class make it possible to consider the gravitational 
field a physical field in the spirit of Faraday--Maxwell and possess all 10 integrals of the 
motion for a closed system of interacting fields. The effective Riemannian space--time used 
to describe the motion of matter in theories of this class reflects in a natural way the exis- 
tence of a physical gravitational field and a single pseudo-Euclidean space--time. 

Hence, we again arrive at the necessity of primary study of the possibilities of con- 
structing a gravitational theory realizing the field approach to the description of the grav- 
itational interaction. 

12. Conservation Laws for the Gravitational Field and Matter 

We shall study the character of conservation laws for all local theories of class (A) 
without making a specific choice of the Lagrangian density. Proceeding from the basic prin- 
ciples of the field approach, for theories of this class we write the Lagrangian densities 
of a system consisting of matter and gravitational field in the form 

L =  Lg(yn~, ~n~)+LM(gn,, ~a), (I2.1) 
where Yni is the metric tensor of pseudo-Euclidean space--time, ~ is the gravitational 
field, and ~A are the remaining fields of matter. 

We shall assume with no loss of generality that the metric tensor of Riemannian space-- 
time gni is a local function depending on the metric tensor of flat space--time, the gravi- 
tational field ~ , and their partial derivatives through second order: 

gmt = gmt (Yni, Os~ni, ~n~, Osj~ni, OsYni, ~ s j ~ i ,  ~sY hi, ~sj~ nl, yni), (12.2) 

where we have used the notation 

ns T -- OxnOxs �9 

We shall assume that the Lagrangian density of matter L M depends only on the fields ~A , 
their partial derivatives of first order, and the metric tensor gni- It is easy to see that 
in this case the Lagrangian density of matter contains partial derivatives of the gravita- 
tional field through second order. 

We shall assume that the Lagrangian density of the gravitational field depends on the 
metric tensor Yni, the gravitational f~eld ~n~ , and their partial derivatives through third 
order. 

To obtain conservation laws we use the covariant method of infinitesimally small dis- 
placmenets. Since the action J is a scalar, for an arbitrary small coordinate transforma- 
tion (2.12) the variations of the action of matter ~JM and of the gravitational field 6Jg 
will be equal to zero. 

Since the Lagrangian density of matter contains both covariant and contravariant compo- 
nents of the metric tensor of Riemannian space--time, we vary the Lagrangian density with re- 
spect to them as if they were independent and then use the relations between their variations 

6g.'~ = - -  g.~g,~t6g u. 

We proceed in an altogether similar way in the variation with respect to the components Yni 
and u of the metric tensor of flat space--time. 

We write the variation of the action of matter under transformation (2.12) in the form 

[ ~LA~ 8TA 6LCpA + Div}, 8JM = f d4x [--A~ni 8Lgni -~- 8LM (12.3) 

where Div denotes divergence terms whose consideration is inconsequential for our purpose. 

Introducing the notation 

t ~ =  --2 
(12o4) 

m mg 

t M~ = %tim 
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for the density of the energy--momentum tensor of matter in flat space--time, we can write the 
variation of the action integral 6JM under the coordinate transformation (2.12) in another 
form equivalent to expression (12.3): 

~Jm=!d4x;~8--~nm 8LmS~r 8'~Y=m'-~ 8z r Div]" (12.5) 

The variations s 8#Ptn, 8~qJa , and 6Lgnm under coordinate transformations (2.12) have 
the form 

8Lynm ---- -- yniDm~ t -  ~miDn~; 

6~q~ n,~ ---- - -  ~ n~D m~ ~ -  q~ . . D  n$ ~ -  ~ D  #P ~m; 

6~g~m ---- - -  gn~D ,~$ ~ -  gm~D .~ ~ -  $~D ~gn,n. 

(12.6) 

Considering these equalities, the variation of the action integral of matter (12.5) can 
be written in the form 

6JM=O=Id4x (~t[ 2Dn { 6LM~8"-~nm ~rat) -Dnt~' s 8LM Dt~nm-- Dn (~A F~!~B), -- ~SLM Dt~A]-~-DIv }. (12.7) 

Since the displacement vector ~ in expression (12.7) is arbitrary, from this we obtain 
the following identity (a strong conservation law): 

( ~)LM q)mn) 8L M [6Lg FB;t~ ' ~ 6LM 
Dtt~"--2Dl \  8---~m~ + 6-'~--~t~ Dnq~mt+Dt+ ~--~A A;n'FB:-}--~A Dn(PA=O" (12.8) 

We obtain another important identity if we substitute relations (12.6) in the expression 
(12.3): 

D t (g.mTtm)-- 1 TmtDngra l = n [ 6LM FB;t.~ ~ al-'M (12.9) 

We now express the covariant derivatives on the left side .of identity (12.9) in terms 
of the partial derivatives and connections of flat sp~ce--time y~. Noting that T ni is a ten- 
sor density of weight l, we obtain 

D [ 6LM ~,B;t ~ 6L/~ O,(gn~.r~9--�89 T'~'O.g,.,:------- ,k--6-~a --A;.~.}--~--za D.~A. 

Now the left side of this expression is the covariant divergence in Riemannian space-- 
time of the density of the energy-momentum tensor of matter Tnl: 

m ] Ot (gnm T l)_= ~ TmiOngmt = V tTnt --- grim Vl Trot" 

Therefore, relation (12.9) assumes the form 

Subtracting this equality from expression (12.8), we obtain 

6L M 6L M 
Di!Jwn--2Di ( ~--~mt q~ mn)+ 8"-~-~mt D~tPmt=gniV, Tu. (12.10) 

It should be emphasized that this identity holds independently of the equations of motion of 
matter and the gravitational field, and it is hence a strong conservation law. 

In a similar way from the invariance of the action of the gravitational field under the 
transformation (2.12), we obtain 

\ 8-6--~ ] ~ D n ~ mt = 0 .  ( 12 .1  1 ) 
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For the density of the symmetric energy--momentum tensor of the gravitational field t~n we 

have as usual 

2~ § __2yn m &L~ t~n----- - -  .nm~g A---~mz" (12.12) 

From relations (12.10) and (12.11) it follows that 

(12.13) 

Under the condition that the equations of the gravitational field are satisfied 

8L 8Lg 8LM 
6 ~  - ~-r + ~-G7~ = ~  

(12.14) 

expression (12.13) simplifies: 

D, [g,~n + t~,,] =gntVra Tm~" (I 2 . 1 5 )  

The equality is a manifestation of the principle of geometrization. From it it follows 
that the covariant divergence in pseudo-Euclidean space--time of the sum of the tensor densi- 
ties of the energy-momentum of matter and of the gravitational field is transformed into a 
covariant divergence in Riemannian space--time of the density of the energy-momentum tensor 
of matter alone. Thus, these are different forms of writing the same expression. 

Under the condition that the equations of the motion of matter (2.11) are satisfied, 
expression (12.8) simplifies to 

\ ~  6__~_~_Dn~m~ = 0, (12.16) 

and from relation (12.9) there automatically follows the covariant equation for conservation 
of the density of the energy-momentum tensor of matter in Riemannian space--time: 

VnTm=OnTni-i-r~mtT mt - -0 ,  ( 1 2.  ! 7) 

This equation is general for theories with a geometrized Lagrangian density of matter and is 
not connected with any concrete version of the theory of gravitation. 

Further, we see that from relations (12.16) and (12.11) under the condition that the 
equations of the gravitational field (12.14) are satisfied there follows a covariant conser- 
vation law for the density of the total symmetric energy-momentum tensor in pseudo-Euclidean 
space--time : 

Di[t~.+t~nl----O. (12.18) 
Thus, on the basis of the Lagrangian formalism we have obtained a conservation law of 

the energy-momentum of matter and the gravitational field in pseudo-Euclidean space--time. 
This fundamental law of nature means that in the field theory of gravitation there are no 
processes (regardless of the erudition of their inventors) which proceed without conserva- 
tion of energy-momentum. From expression (12.18) it follows also that the gravitational field 
considered in pseudo-Euclidean space--time behaves like other physical fields. It possesses 
energy--momentum and contributes to the total energy--momentum tensor of the system. 

On the basis of Eq. (12.18) and identity (12.15) we obtain 

t i D~[ M~+t~.]=g.tV~Tu=O. 

Thus, the conservation law for the density of the total energy--momentum tensor (12.18) 
and the conservation law in form (12.17) when the equation of the gravitational field (12.14) 
and the equations of motion of matter (12.11) are satisfied represent simply different forms 
of writing the same conservation law. The conservation law (12.18) expresses the fact that 
in pseudo-Euclidean space--time the density of the total energy-momentum tensor consisting 
of matter and gravitational field is conserved. This law has the usual form of a conserva- 
tion law. The conservation law (12.17) in Riemannian space--time is not a conservation law in 
the usual sense, since the density of the energy-momentum tensor of matter need not be con- 
served : 

O. T"i 4=0. 
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As Einstein already indicated [18, p. 492]: "... The presence of the second term on the 
left side from a physical point of view means that for matter alone the laws of conservation 
of momentum and energy in their genuine sense are not satisfied; more precisely, they are 
satisfied only when gH~ are constant, i.e., when the components of intensity of the gravi- 
tational field are equal to zero. The second term represents an expression for the momentum 
and, correspondingly, for the energy which are transmitted to matter from the gravitational 
field per unit time in unit volume .... " 

In this case the second term in (2.17) expresses the energetic action of the gravita- 
tional field on matter and shows that matter obtains energy which is "stored," as it were, 
in the Riemannian geometry. The energy of the gravitational field in this case effectively 
goes to the creation of the Riemannian geometry. However, from expression (12.17) it is not 
evident that quantity is conserved. 

The lack of conservation laws in the genuine sense is inherent in the entire subclass 
of gravitational theories with total geometrization and not only Einstein's theory. The 
Lagrangian density of the gravitational field Lg of theories of this subclass depends on the 
field ~niand the metric tensor Yni only through the metric tensor of Riemannian space--time 
gni- Therefore, in theories of this subclass for the density of the symmetric energy--momen- 
tum tensor of matter and gravitational field in pseudo-Euclidean space--time we have 

1 ~m AL ALg �9 ALM AL Ogmt__Os[ AL Ogmt ] + 

Ogmt -I isyny f AL Ogrnt AL Ogmt AL 
0 og , Ill 

(Oqr~,sy)]J)" 

Since in a geometrized theory the equations of the gravitational field have the form 

AL ~L ts mn 8L 
Agmt=6--~mt--g g 6--~ = 0 ,  

t h e  d e n s i t y  of  t h e  s y m m e t r i c  energy--momentum t e n s o r  o f  m a t t e r  and g r a v i t a t i o n a l  f i e l d  in  
pseudo-Euclidean space--time vanishes because of the equations of the gravitational field: 

AL _______~tni=0 ' (12.19) 
ATn~ 

An analogous conclusion regarding the vanishing of the density of the symmetric energy-- 
momentum tensor is also obtained for the free gravitational field. However, th@ equations 
of the free gravitational field have solutions for which the curvature tensor R~l m is non- 
zero. Therefore, in theories with total geometrization the vanishing of the density of the 
energy-momentum tensor of the free gravitational field does not lead to vanishing of the 
field ~ , and hence there exists some fictitious field not possessing a density of energy-- 
momentum but leading to the curving of space--time (the formation of the Riemannian geometry). 

The subclass of gravitational theories with total geometrization, in principle, do not 
enable us to introduce the concept of a gravitational field possessing energy--momentum. From 
this it follows that any path of constructing a theory of gravitation based on flat space-- 
time and proceeding from perceptions of the gravitational field as a physical field with a 
nonzero energy--momentum tensor in principle cannot lead to Einstein's general theory of rela- 
tivity. This general conclusion proves the fallacy of the assertions of a number of authors 
[5, 12] that all such theories unavoidably reduce to Einstein's theory. 

We thus arrive at the following conclusions. I. In local theories of class (A) the 
gravitational field described in pseudo-Euclidean space--time is a physical field possessing 
energy--momentum. On the basis of the identity principle, the motion of matter is described 
in an effective Riemannian space--time created by the energy-momentum of the gravitational 
field. In this approach geometric description arises on the basis of field-theoretic con- 
ceptions of the gravitational field, and conservation laws lie at the basis of it. 2. In 
the subclass of theories with total geometrization the gravitational field and matter have 
a single geometry, but the gravitational field loses the properties of a physical field; 
it does not possess a density of energy--momentum. In this approach there are no field- 
theoretic conceptions of the gravitational field as a field in the spirit of Faraday-Maxwell. 
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The general theory of relativity realizes one possibility of constructing a theory. It 
introduced a field of new type described by a curvature tensor which is not a Faraday-Maxwell 
field. Therefore, here there are no conservation laws of matter and gravitational field taken 
together, and this theory does not satisfy the principle of correspondence with the gravita- 

tional theory of Newton. 

13. Gauge-Invariant Equations of the Gravitational Field 

In this section all relations and equations we shall formulate in Cartesian coordinates, 
although they can, of course, be written in covariant fashion and in an arbitrary curvilinear 

coordinate system. 

We shall consider theories of class (A) with a Lagrangian density of the form (12.1). 
The equations of the gravitational field and the equations of motion of matter have the form 

8Lg 8LM 
8~nm ]- ~ = 0 ,  ( 1 3 . t  

8L M 
6-~f = o. ( 1 3 . 2  

In the set of theories with Lagrangian density (12.1) there are theories in which the 
action integral is invariant under gauge transformations: 

~nz + ~n~ -~- 8na~ -[- ~i~n, ( 1 3 . 3  

where an is an arbitrary gauge four-vector. From invariance of the action integral of the 
free gravitational field under the gauge transformation (13.3) we have 

6Jg= i [ --2anOi ~-}-Div] d4x-----O. 

S i n c e  t h e  gauge  v e c t o r  a n i s  a r b i t r a r y ,  we o b t a i n  

-- 6 L g  ^ 
0 t  8-#7~ = O. 

From t h i s  e q u a t i o n  and t h e  f i e l d  e q u a t i o n  ( 1 3 . 1 )  we o b t a i n  t h e  c o n s e r v a t i o n  e q u a t i o n  f o r  t h e  
s o u r c e  of  t h e  g r a v i t a t i o n a l  f i e l d  

6Lag 
, 8 7 Z  = 0" 

As i s  known [ 2 ] ,  i n  e l e c t r o d y n a m i c s  t h e  i n v a r i a n c e  of  t h e  L a g r a n g i a n  d e n s i t y  L = L A + L M 
u n d e r  gauge  t r a n s f o r m a t i o n s  o f  t h e  v e c t o r  p o t e n t i a l  Ai + Ai + 3 i f  i m p l y  a n a l o g o u s  c o n s e r v a -  
t i o n  laws: 

6L M 6LA 
O~ g-A7 =0,  O; 8"~ =0.  

Since in a gauge theory the source in the field equations is conserved, it is usually 
assumed that the source in equations of a gauge theory of gravitation is the total energy-- 
momentum tensor of the system of matter plus gravitational field. This leads to the situa- 
tion that the field equations become nonlinear, and it is usually asserted that the consis- 
tent inclusion of such nonlinearities can lead to Einstein's nonlinear theory of gravitation 
[5, 12, 22]. 

However, on the one hand, this hypothesis leads primarily to the fact that the gravita- 
tional field looses the properties of a carrier of energy--momentum. If the possibility is 
assumed of identifying the source 

fiLM 1 ~nt 

n l  n l  with the total energy--momentum tensor t = t~ + t~ I, then this immediately implies that the 
energy--momentum tensor of the free gravitational field (for LM = 0) is equal to zero. Such 
a theory does not possess properties characteristic of other physical systems, and we there- 
fore consider it unacceptable. On the other hand, contrary to the assertions of the authors 
of [5, 12, 22], a path proceeding from concepts of a physical gravitational field with a non- 
zero energy-momentum tensor does not in principle lead to Einstein's theory, as shown inSec. 12. 
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